Cognitive workload classification using eye-tracking and EEG data

Jesus L. Lobo, Javier Del Ser, Flavia De Simone, Roberta Presta, Simona Collina, Zdenek Moravek

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

25 Citas (Scopus)

Resumen

It has been shown that an increased mental workload in pilots could lead to a decrease in their situation awareness, which could lead, in turn, to a worse piloting performance and ultimately to critical human errors. Assessing the current pilot's psycho-physiological state is a hot topic of interest for developing advanced embedded cockpits systems capable of adapting their behavior to the state and performance of the pilot. In this work, we investigate a method to classify different levels of cognitive workload starting from synchronized EEG and eye-tracking information. The classifier object of the research is targeted to score a performance high enough to be applicable as a gauge for performance of unobtrusive monitoring systems working with data of lower quality.

Idioma originalInglés
Título de la publicación alojadaProceedings of the International Conference on Human-Computer Interaction in Aerospace, HCI-Aero 2016
EditorialAssociation for Computing Machinery, Inc
ISBN (versión digital)9781450344067
DOI
EstadoPublicada - 14 sept 2016
EventoInternational Conference on Human-Computer Interaction in Aerospace, HCI-Aero 2016 - Paris, Francia
Duración: 14 sept 201616 sept 2016

Serie de la publicación

NombreProceedings of the International Conference on Human-Computer Interaction in Aerospace, HCI-Aero 2016

Conferencia

ConferenciaInternational Conference on Human-Computer Interaction in Aerospace, HCI-Aero 2016
País/TerritorioFrancia
CiudadParis
Período14/09/1616/09/16

Huella

Profundice en los temas de investigación de 'Cognitive workload classification using eye-tracking and EEG data'. En conjunto forman una huella única.

Citar esto