TY - GEN
T1 - Collaborative Exploration and Reinforcement Learning between Heterogeneously Skilled Agents in Environments with Sparse Rewards
AU - Andres, Alain
AU - Villar-Rodriguez, Esther
AU - Martinez, Aritz D.
AU - Del Ser, Javier
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/7/18
Y1 - 2021/7/18
N2 - A critical goal in Reinforcement Learning is the minimization of the time needed for an agent to learn to solve a given environment. In this context, collaborative reinforcement learning refers to the improvement of this learning process through the interaction between agents, which usually yields better results than training each agent in isolation. Most studies in this area have focused on the case with homogeneous agents, namely, agents equally skilled for undertaking their task. By contrast, heterogeneity among agents could arise due to the particular capabilities on how they sense the environment and/or the actions they could perform. Those differences eventually hinder the learning process and information sharing between agents. This issue becomes even more complicated to address over hard exploration scenarios where the extrinsic rewards collected from the environment are sparse. This work sheds light on the impact of leveraging collaborative learning strategies between heterogeneously skilled agents over hard exploration scenarios. Our study gravitates on how to share and exploit knowledge between the agents so as to mutually improve their learning procedures, further considering mechanisms to cope with sparse rewards. We assess the performance of these strategies via extensive simulations over modifications of the ViZDooM environment, which allow examining their benefits and drawbacks when dealing with agents endowed with different behavioral policies. Our results uncover the inherent problems of not considering the skill heterogeneity of the agents in the knowledge sharing strategy, and unleash a manifold of research directions aimed at circumventing these noted issues.
AB - A critical goal in Reinforcement Learning is the minimization of the time needed for an agent to learn to solve a given environment. In this context, collaborative reinforcement learning refers to the improvement of this learning process through the interaction between agents, which usually yields better results than training each agent in isolation. Most studies in this area have focused on the case with homogeneous agents, namely, agents equally skilled for undertaking their task. By contrast, heterogeneity among agents could arise due to the particular capabilities on how they sense the environment and/or the actions they could perform. Those differences eventually hinder the learning process and information sharing between agents. This issue becomes even more complicated to address over hard exploration scenarios where the extrinsic rewards collected from the environment are sparse. This work sheds light on the impact of leveraging collaborative learning strategies between heterogeneously skilled agents over hard exploration scenarios. Our study gravitates on how to share and exploit knowledge between the agents so as to mutually improve their learning procedures, further considering mechanisms to cope with sparse rewards. We assess the performance of these strategies via extensive simulations over modifications of the ViZDooM environment, which allow examining their benefits and drawbacks when dealing with agents endowed with different behavioral policies. Our results uncover the inherent problems of not considering the skill heterogeneity of the agents in the knowledge sharing strategy, and unleash a manifold of research directions aimed at circumventing these noted issues.
KW - collaborative training
KW - curiosity
KW - Deep Reinforcement Learning
KW - heterogeneous agents
KW - intrinsic motivation
KW - sparse rewards
UR - http://www.scopus.com/inward/record.url?scp=85116427047&partnerID=8YFLogxK
U2 - 10.1109/IJCNN52387.2021.9534146
DO - 10.1109/IJCNN52387.2021.9534146
M3 - Conference contribution
AN - SCOPUS:85116427047
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - IJCNN 2021 - International Joint Conference on Neural Networks, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 International Joint Conference on Neural Networks, IJCNN 2021
Y2 - 18 July 2021 through 22 July 2021
ER -