Combined model-based and machine learning approach for damage identification in bridge type structures

Ana Fernández-Navamuel, Diego Zamora-Sánchez, Alberto Armijo-Prieto, Tomás Varona-Poncela, David García-Sánchez, Francisco García-Villena, Francisco Ruiz-Cuenca

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

Resumen

In this work, we propose a combined approach of model-based and machine learning techniques for damage identification in bridge structures. First, a finite element model is calibrated with real data from experimental vibration modes for the undamaged or baseline state. Second, generic synthetic damage scenarios based on modal parameters are automatically generated with the model to train machine learning algorithms for damage classification (Support Vector Machine, SVM) and damage location and quantification (Neural Network, NN). For an initial validation of the method we use a lab scale truss bridge model, proving that specific damage scenarios can be assessed by the Supervised Machine Learning algorithms trained with generic damage scenarios including a certain variability. The NN provides an assessment in terms of damage location and quantification, whereas the SVM provides a damage severity classification with graphical indication of the damage location and quantification through a reduced dimension plot.

Idioma originalInglés
Páginas (desde-hasta)727-732
Número de páginas6
PublicaciónInternational Conference on Structural Health Monitoring of Intelligent Infrastructure: Transferring Research into Practice, SHMII
Volumen2021-June
EstadoPublicada - 2021
Evento10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 2021 - Porto, Portugal
Duración: 30 jun 20212 jul 2021

Huella

Profundice en los temas de investigación de 'Combined model-based and machine learning approach for damage identification in bridge type structures'. En conjunto forman una huella única.

Citar esto