Concept tracking and adaptation for drifting data streams under extreme verification latency

Maria Arostegi*, Ana I. Torre-Bastida, Jesus L. Lobo, Miren Nekane Bilbao, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

3 Citas (Scopus)

Resumen

When analyzing large-scale streaming data towards resolving classification problems, it is often assumed that true labels of the incoming data are available right after being predicted. This assumption allows online learning models to efficiently detect and accommodate non-stationarities in the distribution of the arriving data (concept drift). However, this assumption does not hold in many practical scenarios where a delay exists between predicted and class labels, to the point of lacking this supervision for an infinite period of time (extreme verification latency). In this case, the development of learning algorithms capable of adapting to drifting environments without any external supervision remains a challenging research area to date. In this context, this work proposes a simple yet effective learning technique to classify non-stationary data streams under extreme verification latency. The intuition motivating the design of our technique is to predict the trajectory of concepts in the feature space. The estimation of the region where concepts may reside in the future can be then exploited for producing more updated predictions for newly arriving examples, ultimately enhancing its accuracy during this unsupervised drifting period. Our approach is compared to a benchmark of incremental and static learning methods over a set of public non-stationary synthetic datasets. Results obtained by our passive learning method are promising and encourage further research aimed at generalizing its applicability to other types of drifts.

Idioma originalInglés
Título de la publicación alojadaStudies in Computational Intelligence
EditorialSpringer Verlag
Páginas11-25
Número de páginas15
DOI
EstadoPublicada - 2018

Serie de la publicación

NombreStudies in Computational Intelligence
Volumen798
ISSN (versión impresa)1860-949X

Financiación

FinanciadoresNúmero del financiador
European Commission2013-5659/004-001 EMA2
Eusko Jaurlaritza
Erzincan Üniversitesi

    Huella

    Profundice en los temas de investigación de 'Concept tracking and adaptation for drifting data streams under extreme verification latency'. En conjunto forman una huella única.

    Citar esto