Convolutional Neural Networks for Structured Industrial Data

Luis Moles, Fernando Boto*, Goretti Echegaray, Iván G. Torre

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Regression methods aim to predict a numerical value of a target variable given some input variables by building a function f: Rn→ R. In Industry 4.0 regression tasks, tabular data-sets are especially frequent. Decision Trees, ensemble methods such as Gradient Boosting and Random Forest, or Support Vector Machines are widely used for regression tasks with tabular data. However, Deep Learning approaches are rarely used with this type of data, due to, among others, the lack of spatial correlation between features. Therefore, in this research, we propose two Deep Learning approaches for working with tabular data. Specifically, two Convolutional Neural Networks architectures are tested against different state of the art regression methods. We perform an hyper-parameter tuning of all the techniques and compare the model performance in different industrial tabular data-sets. Experimental results show that both Convolutional Neural Network approaches can outperform the commonly used methods for regression tasks.

Idioma originalInglés
Título de la publicación alojada17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022, Proceedings
EditoresPablo García Bringas, Hilde Pérez García, Francisco Javier Martinez-de-Pison, José Ramón Villar Flecha, Alicia Troncoso Lora, Enrique A. de la Cal, Alvaro Herrero, Francisco Martínez Álvarez, Giuseppe Psaila, Héctor Quintián, Emilio S. Corchado Rodriguez
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas361-370
Número de páginas10
ISBN (versión impresa)9783031180491
DOI
EstadoPublicada - 2023
Evento17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022 - Salamanca, Espana
Duración: 5 sept 20227 sept 2022

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen531 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022
País/TerritorioEspana
CiudadSalamanca
Período5/09/227/09/22

Huella

Profundice en los temas de investigación de 'Convolutional Neural Networks for Structured Industrial Data'. En conjunto forman una huella única.

Citar esto