Convolutional Recurrent Neural Networks to Characterize the Circulation Component in the Thoracic Impedance during Out-of-Hospital Cardiac Arrest

Andoni Elola, Elisabete Aramendi, Unai Irusta, Artzai Picon, Erik Alonso, Iraia Isasi, Ahamed Idris

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Pulse detection during out-of-hospital cardiac arrest remains challenging for both novel and expert rescuers because current methods are inaccurate and time-consuming. There is still a need to develop automatic methods for pulse detection, where the most challenging scenario is the discrimination between pulsed rhythms (PR, pulse) and pulseless electrical activity (PEA, no pulse). Thoracic impedance (TI) acquired through defibrillation pads has been proven useful for detecting pulse as it shows small fluctuations with every heart beat. In this study we analyse the use of deep learning techniques to detect pulse using only the TI signal. The proposed neural network, composed by convolutional and recurrent layers, outperformed state of the art methods, and achieved a balanced accuracy of 90% for segments as short as 3 s.

Idioma originalInglés
Título de la publicación alojada2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1921-1925
Número de páginas5
ISBN (versión digital)9781538613115
DOI
EstadoPublicada - jul 2019
Evento41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Alemania
Duración: 23 jul 201927 jul 2019

Serie de la publicación

NombreProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (versión impresa)1557-170X

Conferencia

Conferencia41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
País/TerritorioAlemania
CiudadBerlin
Período23/07/1927/07/19

Huella

Profundice en los temas de investigación de 'Convolutional Recurrent Neural Networks to Characterize the Circulation Component in the Thoracic Impedance during Out-of-Hospital Cardiac Arrest'. En conjunto forman una huella única.

Citar esto