Data Driven Performance Prediction in Steel Making

Fernando Boto, Maialen Murua, Teresa Gutierrez, Sara Casado, Ana Carrillo, Asier Arteaga

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)
2 Descargas (Pure)

Resumen

This work presents three data-driven models based on process data, to estimate different indicators related to process performance in a steel production process. The generated models allow the optimization of the process parameters to achieve optimal performance and quality levels. A new approach based on ensembles has been developed with feature selection methods and four state-of-the-art regression approximations (random forest, gradient boosting, xgboost and neural networks). The results show that the proposed approach makes the prediction more stable reducing the variance for all cases, even in one case, slightly reducing the bias. Furthermore, from the four machine learning paradigms presented, random forest is the one with the best results in a quantitative way, obtaining a coefficient of determination of 0.98 as a maximum, depending on the target sub-process.
Idioma originalInglés
Número de artículo172
Páginas (desde-hasta)172
Número de páginas1
PublicaciónMetals
Volumen12
N.º2
DOI
EstadoPublicada - 18 ene 2022

Palabras clave

  • Steel making
  • Ensemble learning
  • Feature selection
  • Random forest
  • Optimization

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/723661/EU/Coordinating Optimisation of Complex Industrial Processes/COCOP
  • Funding Info
  • This research is supported by the European Union’s Horizon 2020 Research and Innovation Framework Programme [grant agreement No 723661; COCOP; http://www.cocop-spire.eu (accessed on 6 January 2022)]. The authors want to acknowledge the work of the whole COCOP consortium.

Huella

Profundice en los temas de investigación de 'Data Driven Performance Prediction in Steel Making'. En conjunto forman una huella única.

Citar esto