Deep Echo State Networks for Short-Term Traffic Forecasting: Performance Comparison and Statistical Assessment

Javier Del Ser, Ibai Laña, Eric L. Manibardo, Izaskun Oregi, Eneko Osaba, Jesus L. Lobo, Miren Nekane Bilbao, Eleni I. Vlahogianni

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

13 Citas (Scopus)

Resumen

In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest occurring shortly after the prediction is queried. The activity reported in this long-standing research field has been lately dominated by different Deep Learning approaches, yielding overly complex forecasting models that in general achieve accuracy gains of questionable practical utility. In this work we elaborate on the performance of Deep Echo State Networks for this particular task. The efficient learning algorithm and simpler parametric configuration of these alternative modeling approaches make them emerge as a competitive traffic forecasting method for real ITS applications deployed in devices and systems with stringently limited computational resources. An extensive comparison benchmark is designed with real traffic data captured over the city of Madrid (Spain), amounting to more than 130 Automatic Traffic Readers (ATRs) and several shallow learning, ensembles and Deep Learning models. Results from this comparison benchmark and the analysis of the statistical significance of the reported performance gaps are decisive: Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.

Idioma originalInglés
Título de la publicación alojada2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728141497
DOI
EstadoPublicada - 20 sept 2020
Evento23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020 - Rhodes, Grecia
Duración: 20 sept 202023 sept 2020

Serie de la publicación

Nombre2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020

Conferencia

Conferencia23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
País/TerritorioGrecia
CiudadRhodes
Período20/09/2023/09/20

Financiación

FinanciadoresNúmero del financiador
Centro para el Desarrollo Tecnológico Industrial
Eusko JaurlaritzaIT1294-19
Ministerio de Ciencia e Innovación48AFW22019-00002

    Huella

    Profundice en los temas de investigación de 'Deep Echo State Networks for Short-Term Traffic Forecasting: Performance Comparison and Statistical Assessment'. En conjunto forman una huella única.

    Citar esto