Deep Learning for Pulse Detection in Out-of-Hospital Cardiac Arrest Using the ECG

Andoni Elola*, Elisabete Aramendi, Unai Irusta, Artzai Picon, Erik Alonso, Pamela Owens, Ahamed Idris

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

Pulse detection during out-of-hospital cardiac arrest is necessary to identify cardiac arrest and detect return of spontaneous circulation. Currently, carotid pulse checking and checking for signs of life are the most widespread procedures for pulse detection, but both have been proven inaccurate and time consuming. Automatic methods that could be integrated in Automated External Defibrillators (AEDs) are needed. In this study we propose a deep neural network classifier to detect pulse using exclusively the ECG. We extracted 3914 segments of 4s from 279 patients, all of them with an organized rhythm. They were annotated as pulsed rhythm or pulseless rhythm based on clinical information. A total of 2372 pulsed rhythms and 1542 pulseless rhythms were included in the study. To train and test the model 3038 (223 patients) and 876 segments (56 patients) were used, respectively. The model was evaluated in terms of Sensitivity (Se) and Specificity (Sp) for pulse detection. The network showed a Se/Sp of 89.4%/97.2% during training process and 91.7%/92.5% for the test set.

Idioma originalInglés
Título de la publicación alojadaComputing in Cardiology Conference, CinC 2018
EditorialIEEE Computer Society
ISBN (versión digital)9781728109589
DOI
EstadoPublicada - sept 2018
Evento45th Computing in Cardiology Conference, CinC 2018 - Maastricht, Países Bajos
Duración: 23 sept 201826 sept 2018

Serie de la publicación

NombreComputing in Cardiology
Volumen2018-September
ISSN (versión impresa)2325-8861
ISSN (versión digital)2325-887X

Conferencia

Conferencia45th Computing in Cardiology Conference, CinC 2018
País/TerritorioPaíses Bajos
CiudadMaastricht
Período23/09/1826/09/18

Huella

Profundice en los temas de investigación de 'Deep Learning for Pulse Detection in Out-of-Hospital Cardiac Arrest Using the ECG'. En conjunto forman una huella única.

Citar esto