Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements

Nerea Irastorza-Landa*, Andrea Sarasola-Sanz, Eduardo López-Larraz, Carlos Bibián, Parid Shiman, Niels Birbaumer, Ander Ramos-Murguialday

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

18 Citas (Scopus)

Resumen

Myoelectric control of rehabilitation devices engages active recruitment of muscles for motor task accomplishment, which has been proven to be essential in motor rehabilitation. Unfortunately, most electromyographic (EMG) activity-based controls are limited to one single degree-of-freedom (DoF), not permitting multi-joint functional tasks. On the other hand, discrete EMG-triggered approaches fail to provide continuous feedback about muscle recruitment during movement. For such purposes, myoelectric interfaces for continuous recognition of functional movements are necessary. Here we recorded EMG activity using 5 bipolar electrodes placed on the upper-arm in 8 healthy participants while they performed reaching movements in 8 different directions. A pseudo on-line system was developed to continuously predict movement intention and attempted arm direction. We evaluated two hierarchical classification approaches. Movement intention detection triggered different movement direction classifiers (4 or 8 classes) that were trained and tested over a 5-fold cross validation. We also investigated the effect of 3 different window lengths to extract EMG features on classification. We obtained classification accuracies above 70% for both hierarchical approaches. These results highlight the viability of classifying online 8 upper-arm different directions using surface EMG activity of 5 muscles and represent a first step towards an online EMG-based control for rehabilitation devices.

Idioma originalInglés
Título de la publicación alojada2017 International Conference on Rehabilitation Robotics, ICORR 2017
EditoresArash Ajoudani, Panagiotis Artemiadis, Philipp Beckerle, Giorgio Grioli, Olivier Lambercy, Katja Mombaur, Domen Novak, Georg Rauter, Carlos Rodriguez Guerrero, Gionata Salvietti, Farshid Amirabdollahian, Sivakumar Balasubramanian, Claudio Castellini, Giovanni Di Pino, Zhao Guo, Charmayne Hughes, Fumiya Iida, Tommaso Lenzi, Emanuele Ruffaldi, Fabrizio Sergi, Gim Song Soh, Marco Caimmi, Leonardo Cappello, Raffaella Carloni, Tom Carlson, Maura Casadio, Martina Coscia, Dalia De Santis, Arturo Forner-Cordero, Matthew Howard, Davide Piovesan, Adriano Siqueira, Frank Sup, Masia Lorenzo, Manuel Giuseppe Catalano, Hyunglae Lee, Carlo Menon, Stanisa Raspopovic, Mo Rastgaar, Renaud Ronsse, Edwin van Asseldonk, Bram Vanderborght, Madhusudhan Venkadesan, Matteo Bianchi, David Braun, Sasha Blue Godfrey, Fulvio Mastrogiovanni, Andrew McDaid, Stefano Rossi, Jacopo Zenzeri, Domenico Formica, Nikolaos Karavas, Laura Marchal-Crespo, Kyle B. Reed, Nevio Luigi Tagliamonte, Etienne Burdet, Angelo Basteris, Domenico Campolo, Ashish Deshpande, Venketesh Dubey, Asif Hussain, Vittorio Sanguineti, Ramazan Unal, Glauco Augusto de Paula Caurin, Yasuharu Koike, Stefano Mazzoleni, Hyung-Soon Park, C. David Remy, Ludovic Saint-Bauzel, Nikos Tsagarakis, Jan Veneman, Wenlong Zhang
EditorialIEEE Computer Society
Páginas128-133
Número de páginas6
ISBN (versión digital)9781538622964
DOI
EstadoPublicada - 11 ago 2017
Evento2017 International Conference on Rehabilitation Robotics, ICORR 2017 - London, Reino Unido
Duración: 17 jul 201720 jul 2017

Serie de la publicación

NombreIEEE International Conference on Rehabilitation Robotics
ISSN (versión impresa)1945-7898
ISSN (versión digital)1945-7901

Conferencia

Conferencia2017 International Conference on Rehabilitation Robotics, ICORR 2017
País/TerritorioReino Unido
CiudadLondon
Período17/07/1720/07/17

Huella

Profundice en los temas de investigación de 'Design of continuous EMG classification approaches towards the control of a robotic exoskeleton in reaching movements'. En conjunto forman una huella única.

Citar esto