Designing Hybrid Brain-Machine Interfaces to Detect Movement Attempts in Stroke Patients

Eduardo López-Larraz*, Niels Birbaumer, Ander Ramos-Murguialday

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

1 Cita (Scopus)

Resumen

Hybrid brain-machine interfaces (BMIs) combining brain and muscle activity are a promising therapeutic alternative for rehabilitation of stroke patients with severe paralysis. In this study, we compare different approaches utilizing electroencephalographic (EEG) and electromyographic (EMG) activity to detect movement attempts of stroke patients with complete hand paralysis. Data of 20 patients with a chronic stroke involving the motor cortex were analyzed, and the performance of EEG-based, EMG-based or hybrid classifiers were simulated offline. We show that the combination of EEG and EMG improves the accuracy of movement detection, but that muscles unrelated to the task can also provide high accuracies, reflecting compensatory mechanisms. This result underscores the importance of appropriate designs of hybrid BMIs to maximize their rehabilitative potential.

Idioma originalInglés
Título de la publicación alojadaBiosystems and Biorobotics
EditorialSpringer International Publishing
Páginas897-901
Número de páginas5
DOI
EstadoPublicada - 2019

Serie de la publicación

NombreBiosystems and Biorobotics
Volumen21
ISSN (versión impresa)2195-3562
ISSN (versión digital)2195-3570

Huella

Profundice en los temas de investigación de 'Designing Hybrid Brain-Machine Interfaces to Detect Movement Attempts in Stroke Patients'. En conjunto forman una huella única.

Citar esto