TY - GEN
T1 - Dilated LSTM Networks for Short-Term Traffic Forecasting using Network-Wide Vehicle Trajectory Data
AU - Fafoutellis, Panagiotis
AU - Vlahogianni, Eleni I.
AU - Del Ser, Javier
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - Short-term traffic forecasting is anticipated as an always evolving research topic, boosted by the tremendous recent advances of Machine Learning and Deep Learning, as well as computational power of modern PCs. In this paper, the Dilated Recurrent Neural Networks are introduced in traffic forecasting. Their architecture promotes the deployment of long-term relations and prevents common issues of RNNs, such as exploding and vanishing gradients. The Dilated LSTM Network is exploited to perform traffic conditions forecasting using network-wide data. The data consist of GPS trajectories of ride-hailing company DiDi's vehicles from November of 2016. After preprocessing the data and organizing them into section's travel speed of five-minute time resolution timeseries for each one of the 498 road sections of the road network of Xi'an, China, we fed them to the Dilated LSTM Network. The model consists of four hidden layers, each of them implementing an LSTM Network with one, two and four-step dilation correspondingly. The model achieves 85% accuracy, which is improved over a classic LSTM structure, trained on the same data.
AB - Short-term traffic forecasting is anticipated as an always evolving research topic, boosted by the tremendous recent advances of Machine Learning and Deep Learning, as well as computational power of modern PCs. In this paper, the Dilated Recurrent Neural Networks are introduced in traffic forecasting. Their architecture promotes the deployment of long-term relations and prevents common issues of RNNs, such as exploding and vanishing gradients. The Dilated LSTM Network is exploited to perform traffic conditions forecasting using network-wide data. The data consist of GPS trajectories of ride-hailing company DiDi's vehicles from November of 2016. After preprocessing the data and organizing them into section's travel speed of five-minute time resolution timeseries for each one of the 498 road sections of the road network of Xi'an, China, we fed them to the Dilated LSTM Network. The model consists of four hidden layers, each of them implementing an LSTM Network with one, two and four-step dilation correspondingly. The model achieves 85% accuracy, which is improved over a classic LSTM structure, trained on the same data.
UR - http://www.scopus.com/inward/record.url?scp=85099666101&partnerID=8YFLogxK
U2 - 10.1109/ITSC45102.2020.9294752
DO - 10.1109/ITSC45102.2020.9294752
M3 - Conference contribution
AN - SCOPUS:85099666101
T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Y2 - 20 September 2020 through 23 September 2020
ER -