Discovering dependencies among mined association rules with population-based metaheuristics

Iztok Fister, Javier Del Ser, Akemi Galvez, Andres Iglesias, Eneko Osaba, Iztok Fister

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

Stochastic population-based nature-inspired metaheuristics have been proven as a robust tool for mining association rules. These algorithms are very scalable, as well as very fast compared with some deterministic ones that search for solutions exhaustively. Typically, algorithms for association rule mining identify a lot of rules depending, on the transaction database and number of attributes. Therefore, evaluating these rules is very complex. On the other hand, establishing the relationships between discovered association rules can be considered as a very hard problem that cannot easily be solved manually. In this paper, we propose a new algorithm based on stochastic population-based nature-inspired metaheuristics for discovering dependencies among association rules.

Idioma originalInglés
Título de la publicación alojadaGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion
EditorialAssociation for Computing Machinery, Inc
Páginas1668-1674
Número de páginas7
ISBN (versión digital)9781450367486
DOI
EstadoPublicada - 13 jul 2019
Evento2019 Genetic and Evolutionary Computation Conference, GECCO 2019 - Prague, República Checa
Duración: 13 jul 201917 jul 2019

Serie de la publicación

NombreGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

Conferencia

Conferencia2019 Genetic and Evolutionary Computation Conference, GECCO 2019
País/TerritorioRepública Checa
CiudadPrague
Período13/07/1917/07/19

Huella

Profundice en los temas de investigación de 'Discovering dependencies among mined association rules with population-based metaheuristics'. En conjunto forman una huella única.

Citar esto