Discovery of sustainable transport modes underlying TripAdvisor reviews with sentiment analysis: Transport domain adaptation of sentiment labelled data set

Ainhoa Serna*, Jon Kepa Gerrikagoitia

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

1 Cita (Scopus)

Resumen

In recent years, digital technology and research methods have developed natural language processing for better understanding consumers and what they share in social media. There are hardly any studies in transportation analysis with TripAdvisor, and moreover, there is not a complete analysis from the point of view of sentiment analysis. The aim of study is to investigate and discover the presence of sustainable transport modes underlying in non-categorized TripAdvisor texts, such as walking mobility in order to impact positively in public services and businesses. The methodology follows a quantitative and qualitative approach based on knowledge discovery techniques. Thus, data gathering, normalization, classification, polarity analysis, and labelling tasks have been carried out to obtain sentiment labelled training data set in the transport domain as a valuable contribution for predictive analytics. This research has allowed the authors to discover sustainable transport modes underlying the texts, focused on walking mobility but extensible to other means of transport and social media sources.

Idioma originalInglés
Título de la publicación alojadaNatural Language Processing for Global and Local Business
EditorialIGI Global
Páginas180-199
Número de páginas20
ISBN (versión digital)9781799842415
ISBN (versión impresa)9781799842408
DOI
EstadoPublicada - 31 jul 2020

Huella

Profundice en los temas de investigación de 'Discovery of sustainable transport modes underlying TripAdvisor reviews with sentiment analysis: Transport domain adaptation of sentiment labelled data set'. En conjunto forman una huella única.

Citar esto