Efficient Fake News Detection using Bagging Ensembles of Bidirectional Echo State Networks

Javier Del Ser*, Miren Nekane Bilbao, Ibai Lana, Khan Muhammad, David Camacho

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

The dissemination of fake news is one of the most concerning issues in current digital media platforms, originating from the quick and easy spread of unverified information therethrough. Consequently, intense research efforts have been invested towards automating the process of identifying fake news from textual data by means of Artificial Intelligence methods. Among the manifold approaches proposed for this purpose to date, a large fraction of studies have examined the performance of modern deep neural network architectures, mostly relying on pretrained word embeddings and neural processing modules of diverse kind. Unfortunately, such sophisticated Deep Learning methods often require intense computational efforts for training. In this work we explore a novel approach based on randomization-based recurrent neural networks. Specifically, our proposal consists of a weighted ensemble of bidirectional Echo State Networks learned from word sequences processed through pretrained embeddings. Experiments over two fake news detection datasets reveal that competitive detection statistics are obtained by our proposed approach when compared to shallow learning and avant-garde Deep Learning models, but at a dramatically less computational complexity in their training phase.

Idioma originalInglés
Título de la publicación alojada2022 International Joint Conference on Neural Networks, IJCNN 2022 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728186719
DOI
EstadoPublicada - 2022
Evento2022 International Joint Conference on Neural Networks, IJCNN 2022 - Padua, Italia
Duración: 18 jul 202223 jul 2022

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks
Volumen2022-July

Conferencia

Conferencia2022 International Joint Conference on Neural Networks, IJCNN 2022
País/TerritorioItalia
CiudadPadua
Período18/07/2223/07/22

Financiación

FinanciadoresNúmero del financiador
IBERIFIER
Iberian Digital Media Research and Fact-Checking Hub
Spanish Ministry of Science and EducationPLEC2021-007681, PID2020-117263GB-100
Fundación BBVA
Comunidad de MadridS2018/TCS-4566
European Commission2020-EU-IA-0252
Eusko JaurlaritzaT1294-19, KK-2020/00049

    Huella

    Profundice en los temas de investigación de 'Efficient Fake News Detection using Bagging Ensembles of Bidirectional Echo State Networks'. En conjunto forman una huella única.

    Citar esto