Efficient Object Detection in Autonomous Driving using Spiking Neural Networks: Performance, Energy Consumption Analysis, and Insights into Open-set Object Discovery

Aitor Martinez Seras, Javier Del Ser, Pablo Garcia-Bringas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Besides performance, efficiency is a key design driver of technologies supporting vehicular perception. Indeed, a well-balanced trade-off between performance and energy consumption is crucial for the sustainability of autonomous vehicles. In this context, the diversity of real-world contexts in which autonomous vehicles can operate motivates the need for empowering perception models with the capability to detect, characterize and identify newly appearing objects by themselves. In this manuscript we elaborate on this threefold conundrum (performance, efficiency and open-world learning) for object detection modeling tasks over image data collected from vehicular scenarios. Specifically, we show that well-performing and efficient models can be realized by virtue of Spiking Neural Networks (SNNs), reaching competitive levels of detection performance when compared to their non-spiking counterparts at dramatic energy consumption savings (up to 85%) and a slightly improved robustness against image noise. Our experiments herein offered also expose qualitatively the complexity of detecting new objects based on the preliminary results of a simple approach to discriminate potential object proposals in the captured image.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas5756-5763
Número de páginas8
ISBN (versión digital)9798350399462
DOI
EstadoPublicada - 2023
Evento26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Espana
Duración: 24 sept 202328 sept 2023

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (versión impresa)2153-0009
ISSN (versión digital)2153-0017

Conferencia

Conferencia26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
País/TerritorioEspana
CiudadBilbao
Período24/09/2328/09/23

Huella

Profundice en los temas de investigación de 'Efficient Object Detection in Autonomous Driving using Spiking Neural Networks: Performance, Energy Consumption Analysis, and Insights into Open-set Object Discovery'. En conjunto forman una huella única.

Citar esto