Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation: Combined PCA-based loss function for polyp segmentation

Luisa F. Sánchez-Peralta, Artzai Picón, Juan Antonio Antequera-Barroso, Juan Francisco Ortega-Morán, Francisco M. Sánchez-Margallo, J. Blas Pagador

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

16 Citas (Scopus)

Resumen

Colorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis highly improves the survival rates. The success of deep learning has also benefited this clinical field. When training a deep learning model, it is optimized based on the selected loss function. In this work, we consider two networks (U-Net and LinkNet) and two backbones (VGG-16 and Densnet121). We analyzed the influence of seven loss functions and used a principal component analysis (PCA) to determine whether the PCA-based decomposition allows for the defining of the coefficients of a non-redundant primal loss function that can outperform the individual loss functions and different linear combinations. The eigenloss is defined as a linear combination of the individual losses using the elements of the eigenvector as coefficients. Empirical results show that the proposed eigenloss improves the general performance of individual loss functions and outperforms other linear combinations when Linknet is used, showing potential for its application in polyp segmentation problems.
Idioma originalInglés
Número de artículo1316
Páginas (desde-hasta)1316
Número de páginas1
PublicaciónMathematics
Volumen8
N.º8
DOI
EstadoPublicada - ago 2020

Palabras clave

  • Deep learning
  • Loss functions
  • Principal component analysis
  • Polyp segmentation

Huella

Profundice en los temas de investigación de 'Eigenloss: Combined PCA-Based Loss Function for Polyp Segmentation: Combined PCA-based loss function for polyp segmentation'. En conjunto forman una huella única.

Citar esto