Electrooculogram based sleep stage classification using deep belief network

Bin Xia, Qianyun Li, Jie Jia, Jingyi Wang, Ujwal Chaudhary, Ander Ramos-Murguialday, Niels Birbaumer

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

21 Citas (Scopus)

Resumen

In this work, we used single electrooculogram (EOG) signal to perform automatic sleep scoring. Deep belief network (DBN) and combination of DBN and Hidden Markov Models (HMM) are employed to discriminate sleep stages. Under the leave-one-out protocol, the average accuracy of DBN and DBN-HMM are 77.7% and 83.3% for all sleep stages, respectively. On the other hand, we found the EOG signal not only contribute to identify stages of Awake and rapid eye movement, also contribute to discriminate stage 2 and slow wave sleep stage.

Idioma originalInglés
Título de la publicación alojada2015 International Joint Conference on Neural Networks, IJCNN 2015
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781479919604, 9781479919604, 9781479919604, 9781479919604
DOI
EstadoPublicada - 28 sept 2015
EventoInternational Joint Conference on Neural Networks, IJCNN 2015 - Killarney, Irlanda
Duración: 12 jul 201517 jul 2015

Serie de la publicación

NombreProceedings of the International Joint Conference on Neural Networks
Volumen2015-September

Conferencia

ConferenciaInternational Joint Conference on Neural Networks, IJCNN 2015
País/TerritorioIrlanda
CiudadKillarney
Período12/07/1517/07/15

Huella

Profundice en los temas de investigación de 'Electrooculogram based sleep stage classification using deep belief network'. En conjunto forman una huella única.

Citar esto