EMG-based multi-joint kinematics decoding for robot-aided rehabilitation therapies

Andrea Sarasola-Sanz, Nerea Irastorza-Landa, Farid Shiman, Eduardo Lopez-Larraz, Martin Spuler, Niels Birbaumer, Ander Ramos-Murguialday

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

21 Citas (Scopus)

Resumen

In recent years, a significant effort has been invested in the development of kinematics-decoding models from electromyographic (EMG) signals to achieve more natural control interfaces for rehabilitation therapies. However, the development of a dexterous EMG-based control interface including multiple degrees of freedom (DOFs) of the upper limb still remains a challenge. Another persistent issue in surface myoelectric control is the non-stationarity of EMG signals across sessions. In this work, the decoding of 7 distal and proximal DOFs' kinematics during coordinated upper-arm, fore-arm and hand movements was performed. The influence of the EMG non-stationarity was tested by training a continuous EMG decoder in three different scenarios. Moreover, the generalization characteristics of two algorithms (ridge regression and Kalman filter) were compared in the aforementioned scenarios. Eight healthy participants underwent EMG and kinematics recordings while performing three functional tasks. We demonstrated that ridge regression significantly outperformed the Kalman filter, indicating a superior generalization ability. Furthermore, we proved that the performance drop caused by the session-To-session non-stationarities could be significantly mitigated by including a short re-calibration phase. Although further tests should be performed, these preliminary findings constitute a step forward towards the non-invasive control of the next generation of upper limb rehabilitation robotics.

Idioma originalInglés
Título de la publicación alojadaProceedings of the IEEE/RAS-EMBS International Conference on Rehabilitation Robotics
Subtítulo de la publicación alojadaEnabling Technology Festival, ICORR 2015
EditoresHaoyong Yu, David Braun, Domenico Campolo
EditorialIEEE Computer Society
Páginas229-234
Número de páginas6
ISBN (versión digital)9781479918072
DOI
EstadoPublicada - 28 sept 2015
Evento14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, ICORR 2015 - Singapore, Singapur
Duración: 11 ago 201514 ago 2015

Serie de la publicación

NombreIEEE International Conference on Rehabilitation Robotics
Volumen2015-September
ISSN (versión impresa)1945-7898
ISSN (versión digital)1945-7901

Conferencia

Conferencia14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, ICORR 2015
País/TerritorioSingapur
CiudadSingapore
Período11/08/1514/08/15

Huella

Profundice en los temas de investigación de 'EMG-based multi-joint kinematics decoding for robot-aided rehabilitation therapies'. En conjunto forman una huella única.

Citar esto