Enhanced Generalization Through Prioritization and Diversity in Self-Imitation Reinforcement Learning Over Procedural Environments with Sparse Rewards

Alain Andres*, Daochen Zha, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Exploration poses a fundamental challenge in Reinforcement Learning (RL) with sparse rewards, limiting an agent's ability to learn optimal decision-making due to a lack of informative feedback signals. Self-Imitation Learning (self-IL) has emerged as a promising approach for exploration, leveraging a replay buffer to store and reproduce successful behaviors. However, traditional self-IL methods, which rely on high-return transitions and assume singleton environments, face challenges in generalization, especially in procedurally-generated (PCG) environments. Therefore, new self-IL methods have been proposed to rank which experiences to persist, but they replay transitions uniformly regardless of their significance, and do not address the diversity of the stored demonstrations. In this work, we propose tailored self-IL sampling strategies by prioritizing transitions in different ways and extending prioritization techniques to PCG environments. We also address diversity loss through modifications to counteract the impact of generalization requirements and bias introduced by prioritization techniques. Our experimental analysis, conducted over three PCG sparse reward environments, including MiniGrid and ProcGen, highlights the benefits of our proposed modifications, achieving a new state-of-the-art performance in the MiniGrid-MultiRoom-N12-S10 environment.

Idioma originalInglés
Título de la publicación alojada2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1414-1420
Número de páginas7
ISBN (versión digital)9781665430654
DOI
EstadoPublicada - 2023
Evento2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023 - Mexico City, México
Duración: 5 dic 20238 dic 2023

Serie de la publicación

Nombre2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023

Conferencia

Conferencia2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
País/TerritorioMéxico
CiudadMexico City
Período5/12/238/12/23

Financiación

FinanciadoresNúmero del financiador
European Defence FundEDF-2021-DIGIT-R
European Commission
Eusko JaurlaritzaIT1456-22

    Huella

    Profundice en los temas de investigación de 'Enhanced Generalization Through Prioritization and Diversity in Self-Imitation Reinforcement Learning Over Procedural Environments with Sparse Rewards'. En conjunto forman una huella única.

    Citar esto