Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics

Pedro Lopez-Garcia*, Antonio D. Masegosa, Eneko Osaba, Enrique Onieva, Asier Perallos

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

42 Citas (Scopus)

Resumen

One of the most challenging issues when facing a classification problem is to deal with imbalanced datasets. Recently, ensemble classification techniques have proven to be very successful in addressing this problem. We present an ensemble classification approach based on feature space partitioning for imbalanced classification. A hybrid metaheuristic called GACE is used to optimize the different parameters related to the feature space partitioning. To assess the performance of the proposal, an extensive experimentation over imbalanced and real-world datasets compares different configurations and base classifiers. Its performance is competitive with that of reference techniques in the literature.

Idioma originalInglés
Páginas (desde-hasta)2807-2822
Número de páginas16
PublicaciónApplied Intelligence
Volumen49
N.º8
DOI
EstadoPublicada - 15 ago 2019

Huella

Profundice en los temas de investigación de 'Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics'. En conjunto forman una huella única.

Citar esto