Ensemble Learning for Seated People Counting using WiFi Signals: Performance Study and Transferability Assessment

Jose Ramon Merino Bernaola, Iker Sobron, Javier Del Ser, Iratxe Landa, Inaki Eizmendi, Manuel Velez

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

4 Citas (Scopus)

Resumen

The detection, location, and behavior recognition of human beings in different environments is not only a subject of a wide range of studies, but has also triggered the development of a large number of applications, including those which enhance sustainability and efficiency of infrastructures. For instance, the estimation of the occupancy could improve the energy management of a building. Due to human presence or movement over a particular area, the analysis of variations in wireless signal properties of already deployed wireless technology such as WiFi systems provides the information needed for Machine Learning models to accomplish the non-intrusive (device-free) detection and classification of different human activities. In this context, this work focuses on detecting seated people in an indoor scenario by using ensemble learning, a particular branch of Machine Learning models for supervised learning that hinges on combining the outputs of individual predictors. Furthermore, we evaluate the transferability of the knowledge modeled by ensemble learners. When trained in a particular frequency or channel, such models are used to classify data captured over another different frequency. Our experimental setup and discussed results reveal that while ensembles attain satisfactory levels of predictive accuracy predictions, their knowledge cannot be transferred among different frequencies. This conclusion opens an exciting future towards new means to perform effective knowledge transfer over the frequency domain.

Idioma originalInglés
Título de la publicación alojada2021 IEEE Globecom Workshops, GC Wkshps 2021 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781665423908
DOI
EstadoPublicada - 2021
Evento2021 IEEE Globecom Workshops, GC Wkshps 2021 - Madrid, Espana
Duración: 7 dic 202111 dic 2021

Serie de la publicación

Nombre2021 IEEE Globecom Workshops, GC Wkshps 2021 - Proceedings

Conferencia

Conferencia2021 IEEE Globecom Workshops, GC Wkshps 2021
País/TerritorioEspana
CiudadMadrid
Período7/12/2111/12/21

Financiación

FinanciadoresNúmero del financiador
Spanish GovernmentRTI2018-099162-B-I00
consolidated research groups TSRIT1234-19, IT1294-19
Ministerio de Ciencia, Innovación y Universidades
European Commission
Eusko JaurlaritzaKK-2020/00049
Euskal Herriko UnibertsitateaCOLAB 20/21
European Regional Development Fund
Agencia Estatal de Investigación

    Huella

    Profundice en los temas de investigación de 'Ensemble Learning for Seated People Counting using WiFi Signals: Performance Study and Transferability Assessment'. En conjunto forman una huella única.

    Citar esto