Ensemble of 6 DoF Pose estimation from state-of-the-art deep methods.

Ibon Merino*, Jon Azpiazu, Anthony Remazeilles, Basilio Sierra

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

Deep learning methods have revolutionized computer vision since the appearance of AlexNet in 2012. Nevertheless, 6 degrees of freedom pose estimation is still a difficult task to perform precisely. Therefore, we propose 2 ensemble techniques to refine poses from different deep learning 6DoF pose estimation models. The first technique, merge ensemble, combines the outputs of the base models geometrically. In the second, stacked generalization, a machine learning model is trained using the outputs of the base models and outputs the refined pose. The merge method improves the performance of the base models on LMO and YCB-V datasets and performs better on the pose estimation task than the stacking strategy.

Idioma originalInglés
Número de artículo126270
PublicaciónNeurocomputing
Volumen541
DOI
EstadoPublicada - 7 jul 2023

Huella

Profundice en los temas de investigación de 'Ensemble of 6 DoF Pose estimation from state-of-the-art deep methods.'. En conjunto forman una huella única.

Citar esto