Evolutionary Multi-Objective Quantization of Randomization-Based Neural Networks

Javier Del Ser*, Alain Andres*, Miren Nekane Bilbao, Ibai Lana*, Jesus L. Lobo*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

The deployment of Machine Learning models on hardware devices has motivated a notable research activity around different strategies to alleviate their complexity and size. This is the case of neural architecture search or pruning in Deep Learning. This work places its focus on simplifying randomization-based neural networks by discovering fixed-point quantization policies that optimally balance the trade-off between performance and complexity reduction featured by these models. Specifically, we propose a combinatorial formulation of this problem, which we show to be efficiently solvable by multi-objective evolutionary algorithms. A benchmark for time series forecasting with Echo State Networks over 400 datasets reveals that high compression ratios can be achieved at practically admissible levels of performance degradation, showcasing the utility of the proposed problem formulation to deploy reservoir computing models on resource-constrained hardware devices.

Idioma originalInglés
Título de la publicación alojada2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1346-1351
Número de páginas6
ISBN (versión digital)9781665430654
DOI
EstadoPublicada - 2023
Evento2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023 - Mexico City, México
Duración: 5 dic 20238 dic 2023

Serie de la publicación

Nombre2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023

Conferencia

Conferencia2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
País/TerritorioMéxico
CiudadMexico City
Período5/12/238/12/23

Financiación

FinanciadoresNúmero del financiador
BEREZ-IAKK-2023/00012
Euskampus Fundazioa
Eusko JaurlaritzaT1256-22

    Huella

    Profundice en los temas de investigación de 'Evolutionary Multi-Objective Quantization of Randomization-Based Neural Networks'. En conjunto forman una huella única.

    Citar esto