Expert-driven Rule-based Refinement of Semantic Segmentation Maps for Autonomous Vehicles

Eric L. Manibardo, Ibai Lana, Javier Del Ser, Alexander Carballo, Kazuya Takeda

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Semantic segmentation aims at assigning labels to every pixel of a given image. In the context of autonomous vehicles, semantic segmentation models should be trained with data collected from the traffic network through which vehicles are expected to circulate. Road regulation, weather conditions, and other context features may differ between regions, making local semantic segmentation datasets extremely valuable. However, the high ground truth annotation costs represent a hindrance to the development of such models. The upsurge of powerful feature learning architectures leaves room for semantic segmentation models trained on an unsupervised fashion. This observation vertebrates the purpose of this work: to produce coarse segmentation maps for scene understanding without the need of annotated data. We depart from an unsupervised model that yields low-quality results. The proposed methodology establishes a set of guidelines for the enhancement of segmentation maps. Obtained results expose an improvement of the segmentation quality thanks to the application of our devised guidelines, paving the way for the automatic generation of semantic segmentation datasets.

Idioma originalInglés
Título de la publicación alojadaIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9798350346916
DOI
EstadoPublicada - 2023
Evento34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, Estados Unidos
Duración: 4 jun 20237 jun 2023

Serie de la publicación

NombreIEEE Intelligent Vehicles Symposium, Proceedings
Volumen2023-June

Conferencia

Conferencia34th IEEE Intelligent Vehicles Symposium, IV 2023
País/TerritorioEstados Unidos
CiudadAnchorage
Período4/06/237/06/23

Financiación

FinanciadoresNúmero del financiador
Eusko Jaurlaritza48AFW22019-00002

    Huella

    Profundice en los temas de investigación de 'Expert-driven Rule-based Refinement of Semantic Segmentation Maps for Autonomous Vehicles'. En conjunto forman una huella única.

    Citar esto