Extracting muscle synergy patterns from EMG data using autoencoders

Martin Spüler*, Nerea Irastorza-Landa, Andrea Sarasola-Sanz, Ander Ramos-Murguialday

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

17 Citas (Scopus)

Resumen

Muscle synergies can be seen as fundamental building blocks of motor control. Extracting muscle synergies from EMG data is a widely used method in motor related research. Due to the linear nature of the methods commonly used for extracting muscle synergies, those methods fail to represent agonist-antagonist muscle relationships in the extracted synergies. In this paper, we propose to use a special type of neural networks, called autoencoders, for extracting muscle synergies. Using simulated data and real EMG data, we show that autoencoders, contrary to commonly used methods, allow to capture agonist-antagonist muscle relationships, and that the autoencoder models have a significantly better fit to the data than others methods.

Idioma originalInglés
Título de la publicación alojadaArtificial Neural Networks and Machine Learning - 25th International Conference on Artificial Neural Networks, ICANN 2016, Proceedings
EditoresAlessandro E.P. Villa, Paolo Masulli, Antonio Javier Pons Rivero
EditorialSpringer Verlag
Páginas47-54
Número de páginas8
ISBN (versión impresa)9783319447803
DOI
EstadoPublicada - 2016
Evento25th International Conference on Artificial Neural Networks and Machine Learning, ICANN 2016 - Barcelona, Espana
Duración: 6 sept 20169 sept 2016

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen9887 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia25th International Conference on Artificial Neural Networks and Machine Learning, ICANN 2016
País/TerritorioEspana
CiudadBarcelona
Período6/09/169/09/16

Huella

Profundice en los temas de investigación de 'Extracting muscle synergy patterns from EMG data using autoencoders'. En conjunto forman una huella única.

Citar esto