Fault analysis with modular neural networks

C. Rodríguez*, S. Rementería, J. I. Martín, A. Lafuente, J. Muguerza, J. Pérez

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

Automatic fault diagnosis in power systems presents real challenges to computing technologies. As an alternative approach to expert systems, several neural network solutions have been proposed recently. In this paper a modular, neural network-based solution to power systems alarm handling and fault diagnosis is described that overcomes the limitations of 'toy' alternatives constrained to small and fixed-topology electrical networks. In contrast to monolithical diagnosis systems, the neural network-based approach presented here fulfills the scalability and dynamic adaptability requirements of the application. Mapping the power grid onto a set of interconnected modules that model the functional behaviour of electrical equipment provides the flexibility and speed demanded by the problem. The way in which the neural system is conceived allows full scalability to real-size power systems.

Idioma originalInglés
Páginas (desde-hasta)99-110
Número de páginas12
PublicaciónInternational Journal of Electrical Power and Energy Systems
Volumen18
N.º2
DOI
EstadoPublicada - feb 1996

Huella

Profundice en los temas de investigación de 'Fault analysis with modular neural networks'. En conjunto forman una huella única.

Citar esto