Feature Assessment for a Hybrid Model

Antonio Gálvez*, Dammika Seneviratne, Diego Galar, Esko Juuso

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This paper proposes an assessment of features orientated to improve the accuracy of a hybrid model (HyM) used for detecting faults in a heating, ventilation, and air conditioning (HVAC) system. The HyM combines data collected by sensors embedded in the system with data generated by a physics-based model of the HVAC. The physics-based model includes sensors embedded in the real system and virtual sensors to represent the behaviour of the system when a failure mode (FM) is simulated. This fusion leads to improved maintenance actions to reduce the number of failures and predict the behaviour of the system. HyM can lead to improved fault detection and diagnostics (FDD) processes of critical systems, but multiple fault detection models are sometimes inaccurate. The paper assesses features extracted from synthetic signals. The results of the assessment are used to improve the accuracy of a multiple fault detection model developed in previous research. The assessment of features comprises the following: (1) generation of run-to-failure data using the physics-based model of the HVAC system; the FMs simulated in this paper are dust in the air filter, degradation of the CO2 sensor, degradation of the evaporator fan, and variations in the compression rate of the cooling system; (2) identification of the individual features that strongly distinguish the FM; (3) analysis of how the features selected vary when components degrade.

Idioma originalInglés
Título de la publicación alojadaProceedings of the 5th International Conference on Maintenance, Condition Monitoring and Diagnostics 2021
EditoresEsko Juuso, Diego Galar
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas43-58
Número de páginas16
ISBN (versión impresa)9789819919871
DOI
EstadoPublicada - 2023
EventoThe 5th International Conference on Maintenance, Condition Monitoring and Diagnostics, MCMD 2021 - Oulu, Finlandia
Duración: 16 feb 202117 feb 2021

Serie de la publicación

NombreLecture Notes in Mechanical Engineering
ISSN (versión impresa)2195-4356
ISSN (versión digital)2195-4364

Conferencia

ConferenciaThe 5th International Conference on Maintenance, Condition Monitoring and Diagnostics, MCMD 2021
País/TerritorioFinlandia
CiudadOulu
Período16/02/2117/02/21

Huella

Profundice en los temas de investigación de 'Feature Assessment for a Hybrid Model'. En conjunto forman una huella única.

Citar esto