Feature selection for hand pose recognition in human-robot object exchange scenario

Irati Rasines, Anthony Remazeilles, Pedro M.Iriondo Bengoa

    Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

    4 Citas (Scopus)

    Resumen

    Vision-based hand gesture recognition relies on the extraction of features describing the hand, and the appropriate set of features is usually selected in an empirical manner. We propose in this article a systematic selection of the best features to be considered. An iterative sequential forward feature selection (SFS) approach is proposed to combine the features with the highest recognition rate considering the Gaussian Mixture Modelling within the Expectation Maximization algorithm as classification technique. This approach has been tested with two different illustrative databases. The first one is related to human robot physical interaction and the hand postures considered correspond to key postures the human partner performs just before acquiring an object from the robot. The second database corresponds to the representation of the 10 first numbers of the American Sign Language. In both cases, the recognition rate obtained, measured through the F1 score metrics, is satisfactory (over 0,97), and demonstrates that the proposed technique could be applied to a very large field of applications.

    Idioma originalInglés
    Título de la publicación alojada19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014
    EditoresHerminio Martinez Garcia, Antoni Grau
    EditorialInstitute of Electrical and Electronics Engineers Inc.
    ISBN (versión digital)9781479948468
    DOI
    EstadoPublicada - 8 ene 2014
    Evento19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014 - Barcelona, Espana
    Duración: 16 sept 201419 sept 2014

    Serie de la publicación

    Nombre19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014

    Conferencia

    Conferencia19th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2014
    País/TerritorioEspana
    CiudadBarcelona
    Período16/09/1419/09/14

    Huella

    Profundice en los temas de investigación de 'Feature selection for hand pose recognition in human-robot object exchange scenario'. En conjunto forman una huella única.

    Citar esto