First Steps Predicting Execution of Civil Works from Georeferenced Infrastructure Data

Baterdene Batmunkh, José Antonio Chica Paez, Sergio Gil Lopez, Maider Arana Bollar, Oihana Jauregi Zorzano, Andoni Aranguren Ubierna, Manuel Graña, J. David Nuñez-Gonzalez*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Geospatial data treatment is an important task since it is a big part of big data. Nowadays, geospatial data exploitation is lacking in terms of artificial intelligence. In this work, we focus on the usage of an machine learning models to exploit a geospatial data. We will follow a complete workflow from the collection and first descriptive analysis of the data to the preprocess and evaluation of the different machine learning algorithms. From unload dataset we will predict if the unload will lead to civil work, in other words, it is a classification problem. We conclude that combining machine learning and geospatial data we can get a lot out of it.

Idioma originalInglés
Título de la publicación alojada17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022, Proceedings
EditoresPablo García Bringas, Hilde Pérez García, Francisco Javier Martinez-de-Pison, José Ramón Villar Flecha, Alicia Troncoso Lora, Enrique A. de la Cal, Alvaro Herrero, Francisco Martínez Álvarez, Giuseppe Psaila, Héctor Quintián, Emilio S. Corchado Rodriguez
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas197-207
Número de páginas11
ISBN (versión impresa)9783031180491
DOI
EstadoPublicada - 2023
Evento17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022 - Salamanca, Espana
Duración: 5 sept 20227 sept 2022

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen531 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia17th International Conference on Soft Computing Models in Industrial and Environmental Applications, SOCO 2022
País/TerritorioEspana
CiudadSalamanca
Período5/09/227/09/22

Huella

Profundice en los temas de investigación de 'First Steps Predicting Execution of Civil Works from Georeferenced Infrastructure Data'. En conjunto forman una huella única.

Citar esto