Fusion-based variational image dehazing

Adrian Galdran*, Javier Vazquez-Corral, David Pardo, Marcelo Bertalmio

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

117 Citas (Scopus)

Resumen

We propose a novel image-dehazing technique based on the minimization of two energy functionals and a fusion scheme to combine the output of both optimizations. The proposed fusion-based variational image-dehazing (FVID) method is a spatially varying image enhancement process that first minimizes a previously proposed variational formulation that maximizes contrast and saturation on the hazy input. The iterates produced by this minimization are kept, and a second energy that shrinks faster intensity values of well-contrasted regions is minimized, allowing to generate a set of difference-of-saturation (DiffSat) maps by observing the shrinking rate. The iterates produced in the first minimization are then fused with these DiffSat maps to produce a haze-free version of the degraded input. The FVID method does not rely on a physical model from which to estimate a depth map, nor it needs a training stage on a database of human-labeled examples. Experimental results on a wide set of hazy images demonstrate that FVID better preserves the image structure on nearby regions that are less affected by fog, and it is successfully compared with other current methods in the task of removing haze degradation from faraway regions.

Idioma originalInglés
Número de artículo7792620
Páginas (desde-hasta)151-155
Número de páginas5
PublicaciónIEEE Signal Processing Letters
Volumen24
N.º2
DOI
EstadoPublicada - feb 2017

Huella

Profundice en los temas de investigación de 'Fusion-based variational image dehazing'. En conjunto forman una huella única.

Citar esto