Gradient-Boosting Applied for Proactive Maintenance System in a Railway Bridge

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This article contributes in the research direction of the application of Machine Learning techniques in bridge safety assessment and it lays basis to further improve the accuracy of safety assessment including analysis of real data. The communication puts forward the process and model of scale measured points correlation of bridge monitoring system on the frequency domain as a tactic to control the influence of a railway device (crossing) located on the top deck of a railway bridge. The process and model are put forward mainly for the characteristics of the damage detection for long-term assessment, going from an intensive multi-sensor monitoring system to a softer one. Finally, a Gradient-Boosting multi-regressor method has been developed to be easily implemented in a warning system that provides predictive skills to the current preventive maintenance strategy. The method is validated by simulating the undamaged and abnormal scenarios with Monte Carlo method.
Idioma originalInglés
Título de la publicación alojadaunknown
EditoresPiervincenzo Rizzo, Alberto Milazzo
EditorialSpringer, Cham
Páginas236-244
Número de páginas9
Volumen127
ISBN (versión digital)978-3-030-64594-6
ISBN (versión impresa)978-3-030-64593-9, 9783030645939
DOI
EstadoPublicada - 2021
EventoEuropean Workshop on Structural Health Monitoring, EWSHM 2020 -
Duración: 6 jul 20209 jul 2020

Serie de la publicación

Nombre2366-2557

Conferencia

ConferenciaEuropean Workshop on Structural Health Monitoring, EWSHM 2020
Período6/07/209/07/20

Palabras clave

  • Gradient-boosting
  • Correlation
  • Multi-sensor
  • Bridge

Project and Funding Information

  • Project ID
  • info:eu-repo/grantAgreement/EC/H2020/690660/EU/Risk based approaches for Asset inteGrity multimodal Transport Infrastructure ManagEment/RAGTIME
  • info:eu-repo/grantAgreement/EC/H2020/769373/EU/Future proofing strategies FOr RESilient transport networks against Extreme Events/FORESEE
  • Funding Info
  • The work presented here has received funding from Horizon 2020, the EU’s Framework Programme for Research and Innovation, under grant agreement number 690660 (Project: RAGTIME), and also under grant agreement number 769373 (Project: FORESEE).

Huella

Profundice en los temas de investigación de 'Gradient-Boosting Applied for Proactive Maintenance System in a Railway Bridge'. En conjunto forman una huella única.

Citar esto