Independent component analysis of EMG for posture detection: Sensitivity to variation of posture properties

Nadica Miljković*, Goran Bijelić, Gonzalo A. Garcia, Mirjana B. Popović

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

We applied Agglomerative Hierarchical Clustering (AHC) technique on independent components of low back surface electromyography (sEMG) signals, in order to differ sitting and standing postures. Preliminary results from small group of healthy subjects, suggested that presented method might be used to distinguish between two postures in different conditions. Clustering accuracy varied from 60% to 70% due to variation of position properties, even when the muscle activity was very low: from 11% to 23% of Maximal Voluntary Contraction (MVC).

Idioma originalInglés
Título de la publicación alojada2011 19th Telecommunications Forum, TELFOR 2011 - Proceedings of Papers
Páginas47-50
Número de páginas4
DOI
EstadoPublicada - 2011
Evento2011 19th Telecommunications Forum, TELFOR 2011 - Belgrade, Serbia
Duración: 22 nov 201124 nov 2011

Serie de la publicación

Nombre2011 19th Telecommunications Forum, TELFOR 2011 - Proceedings of Papers

Conferencia

Conferencia2011 19th Telecommunications Forum, TELFOR 2011
País/TerritorioSerbia
CiudadBelgrade
Período22/11/1124/11/11

Huella

Profundice en los temas de investigación de 'Independent component analysis of EMG for posture detection: Sensitivity to variation of posture properties'. En conjunto forman una huella única.

Citar esto