Kernel density-based pattern classification in blind fasteners installation

Alberto Diez-Olivan*, Mariluz Penalva, Fernando Veiga, Lutz Deitert, Ricardo Sanz, Basilio Sierra

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

10 Citas (Scopus)

Resumen

In this work we introduce a kernel density-based pattern classification approach for the automatic identification of behavioral patterns from monitoring data related to blind fasteners installation. High density regions are estimated from feature space to establish behavioral patterns, automatically removing outliers and noisy instances in an iterative process. First the kernel density estimator is applied on the fastener features representing the quality of the installation. Then the behavioral patterns are identified from resulting high density regions, also considering the proximity between instances. Patterns are computed as the average of related monitoring torque-rotation diagrams. New fastening installations can be thus automatically classified in an online fashion. In order to show the validity of the approach, experiments have been conducted on real fastening data. Experimental results show an accurate pattern identification and classification approach, obtaining a global accuracy over 78% and improving current detection capabilities and existing evaluation systems.

Idioma originalInglés
Título de la publicación alojadaHybrid Artificial Intelligent Systems - 12th International Conference, HAIS 2017, Proceedings
EditoresHector Quintian, Emilio Corchado, Francisco Javier [surname]Martinez de Pison, Ruben Urraca
EditorialSpringer Verlag
Páginas195-206
Número de páginas12
ISBN (versión impresa)9783319596495
DOI
EstadoPublicada - 2017
Evento12th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2017 - La Rioja, Espana
Duración: 21 jun 201723 jun 2017

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen10334 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia12th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2017
País/TerritorioEspana
CiudadLa Rioja
Período21/06/1723/06/17

Huella

Profundice en los temas de investigación de 'Kernel density-based pattern classification in blind fasteners installation'. En conjunto forman una huella única.

Citar esto