Meta-learning digitized-counterdiabatic quantum optimization

Pranav Chandarana, Pablo Suárez Vieites, Narendra N. Hegade, Enrique Solano, Yue Ban, Xi Chen*

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)

Resumen

The use of variational quantum algorithms for optimization tasks has emerged as a crucial application for the current noisy intermediate-scale quantum computers. However, these algorithms face significant difficulties in finding suitable ansatz and appropriate initial parameters. In this paper, we employ meta-learning using recurrent neural networks to address these issues for the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (QAOA). By combining meta-learning and counterdiabaticity, we find suitable variational parameters and reduce the number of optimization iterations required. We demonstrate the effectiveness of our approach by applying it to the MaxCut problem and the Sherrington-Kirkpatrick model. Our method offers a short-depth circuit ansatz with optimal initial parameters, thus improving the performance of the state-of-the-art QAOA.

Idioma originalInglés
Número de artículo045007
PublicaciónQuantum Science and Technology
Volumen8
N.º4
DOI
EstadoPublicada - oct 2023

Huella

Profundice en los temas de investigación de 'Meta-learning digitized-counterdiabatic quantum optimization'. En conjunto forman una huella única.

Citar esto