Metal Forming Process Efficiency Improvement Based on AI Services

Fernando Boto, Daniel Cabello, Juan Antonio Ortega, Blanca Puigjaner, Asier Alonso*

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

In this work, the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in the field of metal forming processes in Shear Forming and Spinning machines are explored. The main objective is to improve the quality of the parts produced and the efficiency of these processes through the implementation of predictive models and online value-added services. Firstly, different methods for the analysis and evaluation of the quality of manufactured parts are presented. Additionally, predictive models for online failure detection are developed, based on historical and real-time data, which helps prevent failures and reduce production costs. Furthermore, the challenge of detecting changes in the input material, which can have a significant impact on process outcomes, is addressed. Lastly, the implementation of an algorithm towards “zero defects” is proposed to achieve optimal conditions in the metal forming process. The described approaches enable customers of the incremental forming machine manufacturer to access a diverse range of services associated with the implemented methods. ...

Idioma originalInglés
Título de la publicación alojadaAdvances in Artificial Intelligence in Manufacturing - Proceedings of the 1st European Symposium on Artificial Intelligence in Manufacturing, 2023
EditoresAchim Wagner, Kosmas Alexopoulos, Sotiris Makris
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas167-176
Número de páginas10
ISBN (versión impresa)9783031574955
DOI
EstadoPublicada - 2024
Evento1st European Symposium on Artificial Intelligence in Manufacturing, ESAIM 2023 - Kaiserslautern, Alemania
Duración: 19 sept 202319 sept 2023

Serie de la publicación

NombreLecture Notes in Mechanical Engineering
ISSN (versión impresa)2195-4356
ISSN (versión digital)2195-4364

Conferencia

Conferencia1st European Symposium on Artificial Intelligence in Manufacturing, ESAIM 2023
País/TerritorioAlemania
CiudadKaiserslautern
Período19/09/2319/09/23

Huella

Profundice en los temas de investigación de 'Metal Forming Process Efficiency Improvement Based on AI Services'. En conjunto forman una huella única.

Citar esto