MO-MFCGA: Multiobjective Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking

Eneko Osaba, Javier Del Ser, Aritz D. Martinez, Jesus L. Lobo, Antonio J. Nebro, Xin She Yang

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

Multiobjetive optimization has gained a considerable momentum in the evolutionary computation scientific community. Methods coming from evolutionary computation have shown a remarkable performance for solving this kind of optimization problems thanks to their implicit parallelism and the simultaneous convergence towards the Pareto front. In any case, the resolution of multiobjective optimization problems (MOPs) from the perspective of multitasking optimization remains almost unexplored. Multitasking is an incipient research stream which explores how multiple optimization problems can be simultaneously addressed by performing a single search process. The main motivation behind this solving paradigm is to exploit the synergies between the different problems (or tasks) being optimized. Going deeper, we resort in this paper to the also recent paradigm Evolutionary Multitasking (EM). We introduce the adaptation of the recently proposed Multifactorial Cellular Genetic Algorithm (MFCGA) for solving MOPs, giving rise to the Multiobjective MFCGA (MO-MFCGA). An extensive performance analysis is conducted using the Multiobjective Multifactorial Evolutionary Algorithm as comparison baseline. The experimentation is conducted over 10 multitasking setups, using the Multiobjective Euclidean Traveling Salesman Problem as benchmarking problem. We also perform a deep analysis on the genetic transferability among the problem instances employed, using the synergies among tasks aroused along the MO-MFCGA search procedure.

Idioma originalInglés
Título de la publicación alojada2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728190488
DOI
EstadoPublicada - 2021
Evento2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Orlando, Estados Unidos
Duración: 5 dic 20217 dic 2021

Serie de la publicación

Nombre2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings

Conferencia

Conferencia2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021
País/TerritorioEstados Unidos
CiudadOrlando
Período5/12/217/12/21

Huella

Profundice en los temas de investigación de 'MO-MFCGA: Multiobjective Multifactorial Cellular Genetic Algorithm for Evolutionary Multitasking'. En conjunto forman una huella única.

Citar esto