Monitoring Mooring Lines of Floating Offshore Wind Turbines: Autoregressive Coefficients and Stacked Auto-Associative-Deep Neural Networks

Smriti Sharma*, Vincenzo Nava

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

This study introduces a pioneering monitoring system designed to mitigate operational costs and enhance the sustainability of Floating Offshore Wind Turbines (FOWT). The proposed framework combines Autoregressive models with a Stacked Auto-Associative-based Deep Neural Network (AANN-DNN) to detect and classify damages in mooring systems of FOWTs. By extracting damage-sensitive features (DSFs) using the AR models from time-series data and employing unsupervised learning in the auto-associative neural network, followed by supervised training with DNN, the approach demonstrates exceptional accuracy in damage identification and classification. Numerical simulations conducted using NREL’s OpenFAST software under diverse metocean conditions validate the method’s efficacy, offering a promising solution for efficient FOWT mooring line monitoring.

Idioma originalInglés
Título de la publicación alojada20th International Conference on Condition Monitoring and Asset Management, CM 2024
EditorialBritish Institute of Non-Destructive Testing
ISBN (versión digital)9780903132848
DOI
EstadoPublicada - 2024
Evento20th International Conference on Condition Monitoring and Asset Management, CM 2024 - Oxford, Reino Unido
Duración: 18 jun 202420 jun 2024

Serie de la publicación

Nombre20th International Conference on Condition Monitoring and Asset Management, CM 2024

Conferencia

Conferencia20th International Conference on Condition Monitoring and Asset Management, CM 2024
País/TerritorioReino Unido
CiudadOxford
Período18/06/2420/06/24

Huella

Profundice en los temas de investigación de 'Monitoring Mooring Lines of Floating Offshore Wind Turbines: Autoregressive Coefficients and Stacked Auto-Associative-Deep Neural Networks'. En conjunto forman una huella única.

Citar esto