More is not Always Better: Insights from a Massive Comparison of Meta-heuristic Algorithms over Real-Parameter Optimization Problems

Javier Del Ser, Eneko Osaba, Aritz D. Martinez, Miren Nekane Bilbao, Javier Poyatos, Daniel Molina, Francisco Herrera

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

Much controversy has been lately risen around the design and performance of modern bio-inspired optimization methods, in particular due to the alleged lack of algorithmic novelty in their definition with respect to traditional heuristic solvers. In this work we present a first attempt at shedding empirical evidence over this debate, for which results of a benchmark with unprecedented scales in terms of problems and algorithms are reported and discussed. Specifically, informed conclusions are held in what refers to the claimed superior performance of these bio-inspired solvers and their competitiveness when compared to competition-winning alternatives. Finally, we prove that the tailored selection of a subset of problems and techniques can unfairly bias the comparisons favoring any of such algorithms, ultimately arriving at illusory conclusions about their comparative performance.

Idioma originalInglés
Título de la publicación alojada2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
EditorialInstitute of Electrical and Electronics Engineers Inc.
ISBN (versión digital)9781728190488
DOI
EstadoPublicada - 2021
Evento2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Orlando, Estados Unidos
Duración: 5 dic 20217 dic 2021

Serie de la publicación

Nombre2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings

Conferencia

Conferencia2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021
País/TerritorioEstados Unidos
CiudadOrlando
Período5/12/217/12/21

Huella

Profundice en los temas de investigación de 'More is not Always Better: Insights from a Massive Comparison of Meta-heuristic Algorithms over Real-Parameter Optimization Problems'. En conjunto forman una huella única.

Citar esto