Multi-step Ahead Visual Trajectory Prediction for Object Tracking using Echo State Networks

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

One of the main applications of multi-object tracking in the context of autonomous driving is improving road safety. An accurate environment understanding where pedestrians and vehicles are correctly identified reduce the risk of an accident while driving. However, occlusions produce identification switches and detection errors, which may involve losing track of an object in the images captured by the vehicle. In this context, tracking by detection is the leading solution. Trackers following this architecture employ a Kalman filter for predicting an object location, encoded as a bounding box within the image boundaries. Having access to a posterior state prediction provides useful information for dealing with occlusions. Unfortunately, the Kalman filter is not designed for producing multi-step ahead predictions. In this work we propose the use of Echo State Networks, (ESN) as a modeling alternative to the Kalman filter. Their recursive nature makes ESNs suited for modeling movement patterns of the bounding boxes detected in the image. Performance results are computed by isolating the motion modules from the tracker itself: a perfect object detector is assumed to enable a detailed analysis of the prediction capabilities of each model over specific object tracks and time slots. Experimental results verify the potential of ESNs for accurate multi-step ahead visual motion prediction. The virtual trajectories delineated by the predicted bounding boxes provide valuable information for anticipating occlusions.

Idioma originalInglés
Título de la publicación alojada2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas4782-4789
Número de páginas8
ISBN (versión digital)9798350399462
DOI
EstadoPublicada - 2023
Evento26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023 - Bilbao, Espana
Duración: 24 sept 202328 sept 2023

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
ISSN (versión impresa)2153-0009
ISSN (versión digital)2153-0017

Conferencia

Conferencia26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023
País/TerritorioEspana
CiudadBilbao
Período24/09/2328/09/23

Huella

Profundice en los temas de investigación de 'Multi-step Ahead Visual Trajectory Prediction for Object Tracking using Echo State Networks'. En conjunto forman una huella única.

Citar esto