TY - GEN
T1 - Multifactorial Cellular Genetic Algorithm (MFCGA)
T2 - 2020 IEEE Congress on Evolutionary Computation, CEC 2020
AU - Osaba, Eneko
AU - Martinez, Aritz D.
AU - Lobo, Jesus L.
AU - Ser, Javier Del
AU - Herrera, Francisco
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/7
Y1 - 2020/7
N2 - Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.
AB - Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.
KW - Cellular Genetic Algorithm
KW - Evolutionary Multitasking
KW - Multifactorial Evolutionary Algorithm
KW - Transfer Optimization
KW - Traveling Salesman Problem
UR - http://www.scopus.com/inward/record.url?scp=85092054789&partnerID=8YFLogxK
U2 - 10.1109/CEC48606.2020.9185784
DO - 10.1109/CEC48606.2020.9185784
M3 - Conference contribution
AN - SCOPUS:85092054789
T3 - 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
BT - 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 19 July 2020 through 24 July 2020
ER -