On building physics-based AI models for the design and SHM of mooring systems

V. Nava, A. Aristondo, V. Varo, M. Esteras, I. Touzon, F. Boto, I. Mendikoa, P. Ruiz-Minguela, S. Gil-Lopez, N. Gorostidi, D. Pardo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

Expert systems in industrial processes are modelled using physics-based approaches, data-driven models or hybrid approaches in which however the underlying physical models generally constitute a separate block with respect to the Artificial Intelligence (AI) technique(s). This work applies the novel concept of “imbrication”-a physics-based AI approach-to the mooring system of offshore renewable energy devices to achieve a complete integration of both perspectives. This approach can reduce the size of the training dataset and computational time while delivering algorithms with higher generalization capability and explicability. We first undertake the design of the mooring system by developing a surrogate model coupled with a Bayesian optimiser. Then, we analyse the structural health monitoring of the mooring system by designing a supervised Deep Neural Network architecture. Herein, we describe the characteristics of the imbrication process, analyse preliminary results of our investigation and provide considerations for orienting further research work and sector applicability.

Idioma originalInglés
Título de la publicación alojadaTrends in Renewable Energies Offshore - Proceedings of the 5th International Conference on Renewable Energies Offshore, RENEW 2022
EditoresC. Guedes Soares
EditorialCRC Press/Balkema
Páginas857-865
Número de páginas9
ISBN (versión impresa)9781032420035
DOI
EstadoPublicada - 2023
Evento5th International Conference on Renewable Energies Offshore, RENEW 2022 - Lisbon, Portugal
Duración: 8 nov 202210 nov 2022

Serie de la publicación

NombreTrends in Renewable Energies Offshore - Proceedings of the 5th International Conference on Renewable Energies Offshore, RENEW 2022

Conferencia

Conferencia5th International Conference on Renewable Energies Offshore, RENEW 2022
País/TerritorioPortugal
CiudadLisbon
Período8/11/2210/11/22

Financiación

FinanciadoresNúmero del financiador
BERC2022-2025
Ministry of Economic Affairs and Digital TransformationM04.0008, MIA.2021
Eusko JaurlaritzaKK-2021/00048
Ministerio de Ciencia e InnovaciónSEV-2017-0718, PID2019-108111RB-I00

    Huella

    Profundice en los temas de investigación de 'On building physics-based AI models for the design and SHM of mooring systems'. En conjunto forman una huella única.

    Citar esto