On the Connection between Concept Drift and Uncertainty in Industrial Artificial Intelligence

Jesus L. Lobo*, Ibai Lana, Eneko Osaba, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

AI-based digital twins are at the leading edge of the Industry 4.0 revolution, which are technologically empowered by the Internet of Things and real-time data analysis. Information collected from industrial assets is produced in a continuous fashion, yielding data streams that must be processed under stringent timing constraints. Such data streams are usually subject to non-stationary phenomena, causing that the data distribution of the streams may change, and thus the knowledge captured by models used for data analysis may become obsolete (leading to the so-called concept drift effect). The early detection of the change (drift) is crucial for updating the model's knowledge, which is challenging especially in scenarios where the ground truth associated to the stream data is not readily available. Among many other techniques, the estimation of the model's confidence has been timidly suggested in a few studies as a criterion for detecting drifts in unsupervised settings. The goal of this manuscript is to confirm and expose solidly the connection between the model's confidence in its output and the presence of a concept drift, showcasing it experimentally and advocating for a major consideration of uncertainty estimation in comparative studies to be reported in the future.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2023 IEEE Conference on Artificial Intelligence, CAI 2023
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas171-172
Número de páginas2
ISBN (versión digital)9798350339840
DOI
EstadoPublicada - 2023
Evento2023 IEEE Conference on Artificial Intelligence, CAI 2023 - Santa Clara, Estados Unidos
Duración: 5 jun 20236 jun 2023

Serie de la publicación

NombreProceedings - 2023 IEEE Conference on Artificial Intelligence, CAI 2023

Conferencia

Conferencia2023 IEEE Conference on Artificial Intelligence, CAI 2023
País/TerritorioEstados Unidos
CiudadSanta Clara
Período5/06/236/06/23

Financiación

FinanciadoresNúmero del financiador
Horizon 2020 Framework Programme
Horizon 2020101000162

    Huella

    Profundice en los temas de investigación de 'On the Connection between Concept Drift and Uncertainty in Industrial Artificial Intelligence'. En conjunto forman una huella única.

    Citar esto