On the Potential of Randomization-based Neural Networks for Driving Behavior Classification

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Naturalistic Driving has recently garnered the attention from the community working on Deep Learning models, producing a plethora of modeling proposals on account of reaching an increasingly better predictive performance. Little attention has been paid to the computational implications of adopting such models, particularly when used for inferring the behavior of the driver from naturalistic driving data. This work enters this uncharted research area by probing the balance between complexity and performance of randomization-based neural networks for driving behavior classification. To this end, results from an extensive experimental benchmark comparing these networks to diverse Deep Learning and ensemble learning models are discussed, unveiling a significantly better-balanced trade-off between performance and complexity of randomization-based neural networks, and suggesting more concern with the efficiency of models in prospective studies.

Idioma originalInglés
Título de la publicación alojada2022 IEEE 25th International Conference on Intelligent Transportation Systems, ITSC 2022
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2991-2997
Número de páginas7
ISBN (versión digital)9781665468800
DOI
EstadoPublicada - 2022
Evento25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022 - Macau, China
Duración: 8 oct 202212 oct 2022

Serie de la publicación

NombreIEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC
Volumen2022-October

Conferencia

Conferencia25th IEEE International Conference on Intelligent Transportation Systems, ITSC 2022
País/TerritorioChina
CiudadMacau
Período8/10/2212/10/22

Financiación

FinanciadoresNúmero del financiador
Eusko Jaurlaritza

    Huella

    Profundice en los temas de investigación de 'On the Potential of Randomization-based Neural Networks for Driving Behavior Classification'. En conjunto forman una huella única.

    Citar esto