Prediction of Metabolic Syndrome Based on Machine Learning Techniques with Emphasis on Feature Relevances and Explainability Analysis

Begoña Ispizua*, Diana Manjarrés, Iratxe Niño-Adan

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Metabolic syndrome (MetS) is considered to be a major public health problem worldwide leading to a high risk of diabetes and cardiovascular diseases. In this paper, data collected by the Precision Medicine Initiative of the Basque Country, named the AKRIBEA project, is employed to infer via Machine Learning (ML) techniques the features that have the most influence on predicting MetS in the general case and also separately by gender. Different Feature Normalization (FN) and Feature Weighting (FW) methods are applied and an exhaustive analysis of explainability by means of Shapley Additive Explanations (SHAP) and feature relevance methods is performed. Validation results show that the Extreme Gradient Boosting (XGB) with Min-Max FN and Mutual Information FW achieves the best trade-off between precision and recall performance metrics.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
EditoresXingpeng Jiang, Haiying Wang, Reda Alhajj, Xiaohua Hu, Felix Engel, Mufti Mahmud, Nadia Pisanti, Xuefeng Cui, Hong Song
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1989-1992
Número de páginas4
ISBN (versión digital)9798350337488
DOI
EstadoPublicada - 2023
Evento2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 - Istanbul, Turquía
Duración: 5 dic 20238 dic 2023

Serie de la publicación

NombreProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023

Conferencia

Conferencia2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
País/TerritorioTurquía
CiudadIstanbul
Período5/12/238/12/23

Huella

Profundice en los temas de investigación de 'Prediction of Metabolic Syndrome Based on Machine Learning Techniques with Emphasis on Feature Relevances and Explainability Analysis'. En conjunto forman una huella única.

Citar esto