Quantum neural networks with multi-qubit potentials

Yue Ban*, E. Torrontegui, J. Casanova

*Autor correspondiente de este trabajo

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We propose quantum neural networks that include multi-qubit interactions in the neural potential leading to a reduction of the network depth without losing approximative power. We show that the presence of multi-qubit potentials in the quantum perceptrons enables more efficient information processing tasks such as XOR gate implementation and prime numbers search, while it also provides a depth reduction to construct distinct entangling quantum gates like CNOT, Toffoli, and Fredkin. This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network while facilitating its training.

Idioma originalInglés
Número de artículo9096
PublicaciónScientific Reports
Volumen13
N.º1
DOI
EstadoPublicada - dic 2023

Huella

Profundice en los temas de investigación de 'Quantum neural networks with multi-qubit potentials'. En conjunto forman una huella única.

Citar esto