Reconstruction-Based Anomaly Detection in Wind Turbine Operation Time Series Using Generative Models

Amaia Abanda*, Ainhoa Pujana, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Unsupervised time series anomaly detection is a common tasks in many real world problems, in which the normal/anomaly labels are extremely unbalanced. In this work, we propose to use three generative models (namely, a basic autoencoder, a transformer autoencoder and a diffusion model) for a reconstruction-based anomaly detection pipeline applied to failure detection in wind turbine operation time series. Our experiments show that the transformer autoencoder yields the most accurate reconstructions of the original time series, whereas the diffusion model is not able to obtain good reconstructions. The reconstruction error, which is used as an anomaly score, seems to follow different distributions for the anomalies and for the normal data in 2 of the 3 models, which is confirmed by our quantitative evaluation. The transformer autoencoder is the best performing generative model, achieving a AUC score of 0.98 in the detection of the anomalies. However, the same result is obtained by standard (i.e. non-generative) outlier detection algorithms, exposing that although the anomalies in this problem are sequence anomalies – with a temporal nature –, they can be effectively modeled and detected as point outliers.

Idioma originalInglés
Título de la publicación alojadaAdvances in Artificial Intelligence - 20th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2024, Proceedings
EditoresAmparo Alonso-Betanzos, Bertha Guijarro-Berdiñas, Verónica Bolón-Canedo, Elena Hernández-Pereira, Oscar Fontenla-Romero, Juan Ramón Rabuñal, David Camacho, Manuel Ojeda-Aciego, Jesús Medina, José C. Riquelme, Alicia Troncoso
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas194-203
Número de páginas10
ISBN (versión impresa)9783031627989
DOI
EstadoPublicada - 2024
Evento20th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2024 - A Coruña, Espana
Duración: 19 jun 202421 jun 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen14640 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia20th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2024
País/TerritorioEspana
CiudadA Coruña
Período19/06/2421/06/24

Huella

Profundice en los temas de investigación de 'Reconstruction-Based Anomaly Detection in Wind Turbine Operation Time Series Using Generative Models'. En conjunto forman una huella única.

Citar esto