Resilience to the Flowing Unknown: An Open Set Recognition Framework for Data Streams

Marcos Barcina-Blanco*, Jesus L. Lobo, Pablo Garcia-Bringas, Javier Del Ser

*Autor correspondiente de este trabajo

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

Resumen

Modern digital applications extensively integrate Artificial Intelligence models for automated decision-making. However, these AI-based systems encounter reliability and safety challenges when handling continuous data streams in dynamic scenarios. This work explores the concept of resilient AI systems that must operate in the face of unexpected events and unseen patterns. This is a common issue that regular closed-set classifiers encounter in streaming scenarios, as they are designed to compulsory classify any new observation into one of the training patterns (i.e., the so-called over-occupied space problem). In batch learning, the Open Set Recognition field addresses this issue by requiring models to maintain classification performance when processing unknown patterns. This work investigates the application of an Open Set Recognition framework that combines classification and clustering to address the over-occupied space problem in streaming scenarios. We devise a benchmark comprising different classification datasets with varying ratios of known to unknown classes, and experiments compare the performance of the proposed framework with that of individual incremental classifiers. Discussions held over the obtained results highlight situations where the framework performs best and the limitations of incremental classifiers in open-world streaming environments.

Idioma originalInglés
Título de la publicación alojadaHybrid Artificial Intelligent Systems - 19th International Conference, HAIS 2024, Proceedings
EditoresHéctor Quintián, Esteban Jove Pére, José Luis Calvo Rolle, Emilio Corchado, Alicia Troncoso Lora, Francisco Martínez Álvarez, Hilde Pérez García, Francisco Javier Martínez de Pisón, Pablo García Bringas, Álvaro Herrer, Paol Fosci
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas139-152
Número de páginas14
ISBN (versión impresa)9783031741821
DOI
EstadoPublicada - 2025
Evento19th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2024 - Salamanca, Espana
Duración: 9 oct 202411 oct 2024

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen14857 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia19th International Conference on Hybrid Artificial Intelligence Systems, HAIS 2024
País/TerritorioEspana
CiudadSalamanca
Período9/10/2411/10/24

Huella

Profundice en los temas de investigación de 'Resilience to the Flowing Unknown: An Open Set Recognition Framework for Data Streams'. En conjunto forman una huella única.

Citar esto