Road Traffic Forecasting using Stacking Ensembles of Echo State Networks

Javier Del Ser, Ibai Lana, Miren Nekane Bilbao, Eleni I. Vlahogianni

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

Road traffic forecasting is arguably one of the practical applications related to Intelligent Transportation Systems where Machine Learning models have impacted most significantly in recent years. The advent of increasingly sophisticated supervised learning methods to capture and generalize complex patterns from data has unchained a flurry of research analyzing the performance of different models when learning from real data collected in road networks of very diverse nature. Nonetheless, the community has paid little attention to the use of reservoir computing models for traffic prediction. This field comprises several different modeling approaches ranging from liquid state machines to echo state networks, all sharing in common recurrence and randomness between neural processing units. This paper builds upon this research niche by exploring how ensembles of Echo State Networks can yield improved traffic forecasts when compared to other machine learning models. Specifically, we propose a regression model composed by a stacking ensemble of reservoir computing learners. As evinced by simulation results obtained with real data from Madrid (Spain), the synergistic combination of stacking ensembles and reservoir computing allows our proposed model to outperform other machine learning models considered in our benchmark.

Idioma originalInglés
Título de la publicación alojada2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas2591-2597
Número de páginas7
ISBN (versión digital)9781538670248
DOI
EstadoPublicada - oct 2019
Evento2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019 - Auckland, Nueva Zelanda
Duración: 27 oct 201930 oct 2019

Serie de la publicación

Nombre2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019

Conferencia

Conferencia2019 IEEE Intelligent Transportation Systems Conference, ITSC 2019
País/TerritorioNueva Zelanda
CiudadAuckland
Período27/10/1930/10/19

Huella

Profundice en los temas de investigación de 'Road Traffic Forecasting using Stacking Ensembles of Echo State Networks'. En conjunto forman una huella única.

Citar esto