Scalable Data Profiling for Quality Analytics Extraction

Anastasios Nikolakopoulos*, Efthymios Chondrogiannis, Efstathios Karanastasis, María José López Osa, Jordi Arjona Aroca, Michalis Kefalogiannis, Vasiliki Apostolopoulou, Efstathia Deligeorgi, Vasileios Siopidis, Theodora Varvarigou

*Autor correspondiente de este trabajo

    Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

    1 Cita (Scopus)

    Resumen

    In today’s modern society, data play an integral role in the development global industry, since they have become a valuable asset for companies, institutions, governments, and others. At the same time, data generated daily, at a global scale, require significant resources to pre-process, filter and store. When it comes to acquiring such stored data, it is essential to understand which dataset fits to the needs of the user beforehand. One particularly important factor is the quality of a dataset, which could be determined based on a series of quality related attributes generated by it. Such attributes constitute “Profiling”, the process of obtaining information from a data sample, related to the complete dataset’s quality. However, in the era of Big Data, the ability to apply profiling techniques in complete large datasets should also be considered, in order to obtain complete quality insights. This paper attempts to provide a solution for this consideration by presenting “DaQuE”, a scalable framework for efficient profiling and quality analytics extraction in complete datasets of all volumes.

    Idioma originalInglés
    Título de la publicación alojadaArtificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops - MHDW 2024, 5G-PINE 2024, and AI4GD 2024, Proceedings
    EditoresIlias Maglogiannis, Lazaros Iliadis, Ioannis Karydis, Antonios Papaleonidas, Ioannis Chochliouros
    EditorialSpringer Science and Business Media Deutschland GmbH
    Páginas177-189
    Número de páginas13
    ISBN (versión impresa)9783031632266
    DOI
    EstadoPublicada - 2024
    Evento13th Mining Humanistic Data Workshop, MHDW 2024, 9th Workshop on 5G-Putting Intelligence to the Network Edge, 5G-PINE 2024 and 1st Workshop on AI in Applications for Achieving the Green Deal Targets, AI4GD 2024 held as parallel events of the IFIP WG 12.5 International Workshops on Artificial Intelligence Applications and Innovations, AIAI 2024 - Corfu, Grecia
    Duración: 27 jun 202430 jun 2024

    Serie de la publicación

    NombreIFIP Advances in Information and Communication Technology
    Volumen715 IFIPAICT
    ISSN (versión impresa)1868-4238
    ISSN (versión digital)1868-422X

    Conferencia

    Conferencia13th Mining Humanistic Data Workshop, MHDW 2024, 9th Workshop on 5G-Putting Intelligence to the Network Edge, 5G-PINE 2024 and 1st Workshop on AI in Applications for Achieving the Green Deal Targets, AI4GD 2024 held as parallel events of the IFIP WG 12.5 International Workshops on Artificial Intelligence Applications and Innovations, AIAI 2024
    País/TerritorioGrecia
    CiudadCorfu
    Período27/06/2430/06/24

    Huella

    Profundice en los temas de investigación de 'Scalable Data Profiling for Quality Analytics Extraction'. En conjunto forman una huella única.

    Citar esto